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Statistical mechanics of random two-player games

J. Berg*
Institute for Theoretical Physics, Otto-von-Guericke University, Postfach 4120, D-39016 Magdeburg, Germany

~Received 22 October 1999!

Using methods from the statistical mechanics of disordered systems, we analyze the properties of bimatrix
games with random payoffs in the limit where the number of pure strategies of each player tends to infinity.
We analytically calculate quantities such as the number of equilibrium points, the expected payoff, and the
fraction of strategies played with nonzero probability as a function of the correlation between the payoff
matrices of both players, and compare the results with numerical simulations.

PACS number~s!: 05.20.2y, 02.50.Le, 64.60.Cn
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The adaptation to the behavior of others and to a comp
environment is a process central to economics, sociolo
international relations, and politics. Game theory aims
model problems of strategic decision making in mathem
cal terms: Two or more interacting participants, called pla
ers, make decisions in a competitive situation. Each pla
receives a reward, called the payoff, which not only depe
on his own decision, but also on those of the other players
the generic setup a number of players choose between
ferent strategies, the combination of which determines
outcome of the game specified by the payoff to each pla
Each player strives to achieve as large a payoff as poss
One of the cornerstones of modern economics and g
theory is the concept of a Nash equilibrium@1#; for an intro-
duction, also see Ref.@2#. A Nash equilibrium~NE! de-
scribes a situation where no player can unilaterally impro
his payoff by changing his individual strategy given that t
other players all stick to their strategies. However, this c
cept is thought to suffer from the serious drawback tha
most games there is a large number of Nash equilibria w
different characteristics but no means of telling which o
will be chosen by the players, as would be required o
predictive theory.

This conceptual problem already shows up in the para
matic model of a bimatrix game between two playersX and
Y, where playerX chooses a so-calledpure strategy Xi
P(1, . . . ,N) with probability xi>0, and playerY chooses
strategyYjP(1, . . . ,N) with probability yj>0. The vectors
x5(x1 , . . . ,xN) and y5(y1 , . . . ,yN) are called mixed
strategies, and are constrained to the (N21)-dimensional
simplex by normalization. For a pair of pure strategies (i , j )
the payoff to playerX is given by the corresponding entry i
his payoff matrixai j , whereas the payoff to playerY is given
by bi j . The expected payoffto player X is thus given by
nx(x,y)5( i , j xiai j y j and analogously for playerY. A Nash
equilibrium (x* ,y* ) is defined by

nx~x* ,y* !5max
x

nx~x,y* !

~1!

ny~x* ,y* !5max
y

ny~x* ,y!.

*Electronic address: johannes.berg@physik.uni-magdeburg.d
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The condition for a NE with agiven setof expected pay-
offs nx andny may be written as

(
j

ai j y j2nx<0, xi>0, xi S (
j

ai j y j2nxD 50 ; i ,

~2!

(
i

xibi j 2ny<0, yj>0, yj S (
i

xibi j 2nyD 50 ; j ,

where we have dropped the* indices for simplicity. The first
column ensures that there are no pure strategies~and thus
also no mixed strategies! which will yield a payoff larger
thannx to playerX andny to playerY. Thus no player will
have a reason to deviate from his mixed strategy. The sec
column ensures that the mixed strategies may be interpr
as probabilities and the third ensures thatnx5( i , j xiai j y j and
analogously for playerY. In this situation there exists no
mixed strategy which will increase the expected payoff toX
if Y does not alter his strategy, and vice versa forY. Nash’s
theorem@1# states that for any bimatrix game there is at le
one NE.

The third column in Eq.~2! states that wheneverxi is
strictly positive, ( jai j y j5nx and whenever( jai j y j2nx is
strictly negative,xi is zero. Thus for a given set of strategie
played with nonzero probability~out of 4N possible choices!,
the values of all nonzero components of a mixed strategy
be determined by solving the resulting linear equatio
( jai j y j5nx ; i :xi.0 and ( ixibi j 5ny ; j :yj.0 subject
to the normalization condition.

Apart from applications in economics, politics, sociolog
and mathematical biology, there exists a wide body of ma
ematical literature on bimatrix games concerned with fun
mental topics such as exact bounds for, e.g., the numbe
NE @3# and efficient algorithms for locating them@4#. For
games even of moderate size a large number of NE
found, forming a set of disconnected points. In gene
the different NE all yield different expected payoffs to th
players.

However, many situations of interest are characterized
a large number of possible strategies and complicated r
tions between the strategic choices of the players and
resulting payoffs. In such cases it is tempting to model
payoffs by random matrices in order to calculatetypical
properties of the game. This idea is frequently used in
statistical mechanics approach to complex systems suc
2327 ©2000 The American Physical Society
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2328 PRE 61J. BERG
spin glasses@5,6#, neural networks@7#, evolutionary models
@8,9#, or hard optimization problems@10,11#. Recently this
approach has been used to investigate the typical prope
of zero-sum games@12# obeyingai j 52bi j . A partial analy-
sis of bimatrix games using the so-called annealed appr
mation was given in Ref.@13#.

In this paper we investigate the properties of Nash eq
libria in bimatrix games with a large number of pure stra
gies and random entries of the payoff matrices. In this
proach characteristics of the game are encoded in
distribution of payoff matrices—with only a few
parameters—instead of the payoff matrices themselves.
ing techniques from the statistical mechanics of disorde
systems such as the replica trick we calculate the typ
number of NE with a given payoff.

The paper is organized as follows: Having set up
probability distribution of payoffs to be considered, we co
struct an indicator function for NE which will allow us t
count the number of NE. Then the average of the logarit
of the number of NE over the disorder will be calculate
The solution is discussed both in game theoretic and geo
ric terms, and is compared with the results of numeri
simulations. Finally, we give a summary and an outlook
future developments.

I. DISTRIBUTION OF PAYOFF MATRICES

We consider bimatrix games with square payoff matric
$ai j ,bi j % where i , j 51, . . . ,N, where the thermodynami
limit consists ofN→`. We assume that the entries of th
payoff matrices at different sites are identically and indep
dently distributed. Since the two payoff matrices may
multiplied by any constant or have any constant added
them without changing the properties of the game in a
material way, there is no loss of generality involved in co
sidering payoffs of orderN21/2 and of zero mean. In the
thermodynamic limit one finds that only the first two m
ments of the payoff distribution are relevant, as is gener
the case in fully connected disordered systems describe
mean-field theories. Hence the entries of the payoff matr
may be considered to be Gaussian distributed. Then the
property of the distribution of payoffs which is not fixed b
these specifications is the correlationk between entries at th
same site of the two payoff matrices.

We thus choose the entries of the payoff matrices to
drawn randomly according to the probability distribution

p~$ai j %,$bi j %!5)
i j

N

2pA12k2

3expH 2
N~ai j

2 22kai j bi j 1bi j
2 !

2~12k2!
J , ~3!

i.e., a Gaussian distribution with zero mean, variance 1N
and correlationŠ^ai j bkl&‹5kd ikd j l /N for all pairs (i , j ) and
(k,l ). Here and in the following, the double angles den
the average over the payoff distribution~3!. For k521, Eq.
~3! includes a Diracd d(ai j 1bi j ) corresponding to a zero
sum game and we recover the situation of Ref.@12# as a
special case.k50 corresponds to uncorrelated payoff mat
ies
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ces, andk51 is the so-called symmetric caseai j 5bi j ,
where the two players always receive identical payoffs.

Thus the parameterk describes the degree of similarit
between the payoffs to either player, and can be used
continuously tune the game from a zero-sum game t
purely symmetric game. In the former case, the gain of o
player is the loss of the other, so generally negativek corre-
sponds to a competitive situation, whereas for positivek
there are many pairs of strategies which are beneficial to b
players.

II. ENTROPY OF NASH EQUILIBRIA
AND THE INDICATOR FUNCTION

In this section we construct an indicator function which
zero at a NE with payoffsnx and ny to playersX and Y,
respectively, and nonzero everywhere else. This func
will be made the argument of a properly normalized Diracd
function. Integrating the Diracd function over the mixed
strategies of both players, we are effectively counting
number of NE with the specified payoffs. From the resulti
spectrum of NE the statistical properties of NE in bimat
games may be deduced. Since we expect the number o
to scale exponentially with the size of the game our cen
tool of investigation will be theentropy of Nash equilibria
defined byS(nx,ny)5(1/N)ln N(nx,ny), whereN(nx,ny) is
the number of NE with the specified payoffs per unit interv
within a small interval aroundnx andny . SinceNS(nx,ny)
is expected to be an extensive quantity, we may assume
S(nx,ny) is self-averaging, and in the thermodynamic lim
the average value of the entropy will be realized with pro
ability 1. Hence the central goal of our calculation will be
evaluateŠ^S(nx,ny)&‹.

In this framework the total number of NE is given by

N5E dnxdnyeNS(nx,ny), ~4!

so in the thermodynamic limit the NE will be exponential
dominated by the maximum of the curveSªmaxS(nx,ny).
This implies that a randomly chosen NE will yield the pa
offs where the maximum occurs with probability 1. On th
other hand, the line whereS(nx,ny)50 delimits the smallest
and the largest values ofnx,ny for which there is still an
exponential number of NE.

The three expressions may be encoded in a single co
tion @14# by introducing the variablesx̃ and ỹ with

x̃i5H xi , xi.0

(
j

ai j y j2nx, xi50,

~5!

ỹ j5H yj , yj.0

(
i

xibi j 2ny, yj50.

Condition ~2! may be written as
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I i
x5 x̃iQ~2 x̃i !2S (

j
ai j ỹ jQ~ ỹ j !2nxD 50,

~6!
I j

y5 ỹ jQ~2 ỹ j !2S (
j

x̃iQ~ x̃i !bi j 2nyD 50,

so for positivex̃i , x̃i5xi , whereas for negativex̃i we have
x̃i5( jai j ỹ jQ( ỹ j )2nx . Furthermore we havexi50 if x̃i

,0 and ( jai j ỹ jQ( ỹ j )2nx50 for x̃i.0. The condition
xi(( jai j y j2nx)50 is thus satisfied automatically. Analo
gous relations hold for playerY. The new variables therefor
serve as a convenient tool to encode the ‘‘complementa
quantitiesxi and( jai j y j2nx in a single variable. Analogou
relations hold for playerY. The density of NE with payoffs
nx andny may thus be written as

N~nx,ny!5E dm~ x̃!dm~ ỹ!)
i

d~ I i
x!)

j
d~ I j

y!UU]~ I x,I y!

]~ x̃,ỹ!
UU,
~7!

where the mixed strategies are rescaled to( ixi5( j y j5N so
we define the measuredm as

dm~ x̃!5)
i

dx̃idS (
i

x̃iQ~ x̃i !2ND . ~8!

This scaling of the mixed strategies assumes that the ex
sive number of strategies are played with nonzero proba
ity, so the individual termsxi andyj are all of orderO(1).
The integrals overx̃ and ỹ effectively amount to choosing
set of strategies withx̃i.0 and ỹ j.0, solving the resulting
linear equations for the components played with nonz
probability, and checking if this candidate for a NE fulfil
conditions~2!. It may thus be viewed as performing the s
called support enumeration algorithm analytically@4#.

III. CALCULATION OF THE TYPICAL NUMBER
OF NASH EQUILIBRIA

In this section we calculate the average ofS(nx ,ny) over
disorder~3!. In order to represent the logarithm of Eq.~7! we
use the replica-trick lnN5 lim

n→0
(d/dn)N n and compute

the average overN n for integern taking the limitn→0 by
analytic continuation at the end. Using integral represen
tions of the Diracd function we obtain

N n~nx,ny!5)
a,i

n,N E dm~ x̃a!dx̂i
a

2p )
a, j

E dm~ ỹa!dŷj
a

2p

3expH 2 i(
a,i

x̃i
aQ~2 x̃i

a!x̂i
a

1 i (
a,i , j

x̂i
aai j ỹ j

aQ~ ỹ j
a!2 inx(

a,i
x̂i

a

2 i(
a, j

ỹ j
aQ~2 ỹ j

a!ŷ j
a1 i (

a,i , j
x̃i

aQ~ x̃i
a!bi j ŷ j

a

2 iny(
a, j

ŷ j
aJ ~ uudet~D !uu!n, ~9!

wherea runs from 1 ton. The most awkward term of this
’’

n-
il-

o

a-

expression is the absolute value of the normalizing deter
nant, i.e., the Jacobian matrix ofI x and I y given by

Dª

]~ I x,I y!

]~ x̃,ỹ!
5S d i i 8Q~2 x̃i ! 2ai j Q~ ỹ j !

2bi j Q~ x̃i ! d j j 8Q~2 ỹ j !
D , ~10!

which arises from the coefficients ofx̃ and ỹ in I x and I y .
Since we are only interested in the absolute value of
determinant, we are free to interchange rows and column
this matrix. Rearranging the rows and columns ofD such
that the pxN strategies withx̃i.0 and thepyN strategies
with ỹ j.0 are grouped together, one finds that only the
sulting quadratic submatrix of sizeN(px1py) by N(px
1py) contributes to the determinant ofD. From Eq.~2! one
finds that the distinction betweenpx and py is immaterial,
since the number of strategies played by playerX at any NE
always equals that played byY and the determinant ofD is
zero for pxÞpy . In the following we will assume tha
(1/N)ln(detD) is a self-averaging quantity depending o
px5py . Splitting off the normalizing determinant, the ave
age over the payoffs may now easily be performed, detail
the calculations are given in Appendix A. The average o
the disorder introduces a coupling between the replicas,
one introduces the symmetric matrix of the overlaps betw
mixed strategies of each player as order parameters,

qab
x 5

1

N (
i

x̃i
aQ~ x̃i

a!x̃i
bQ~ x̃i

b!,

qab
y 5

1

N (
j

ỹ j
aQ~ ỹ j

a!ỹ j
bQ~ ỹ j

b!, ~11!

as well as their conjugatesq̂ab
x,y . At nonzero values ofk we

also obtain terms which couple the phase-space variablex̃i

to the auxiliary variablesx̂i and similarly for playerY, so we
also introduce the order parameters

Rab
x 5

1

N (
i

i x̂ i
ax̃i

bQ~ x̃i
b!, Rab

y 5
1

N (
j

i ŷ j
bỹ j

aQ~ ỹ j
a!.

~12!

Similarly, in order to include the normalizing determinant w
introduce the order parameters

pa
x5

1

N (
i

Q~ x̃i
a!, pa

y5
1

N (
j

Q~ ỹ j
a!, ~13!

giving the fraction of strategies played at a NE.
Anticipating the limitn→0, the quenched average of th

normalizing determinant may be computed using res
from the theory of random matrices as outlined in Appen
A, giving ^^ln(uudet(D) uu)&&5Np(ln p21).

We finally obtain



r
t

he

t-

g to

,
ix
m-

d
n
ce

the

NE

nd

dle-

2330 PRE 61J. BERG
Š^N n~nx,ny!&‹5 )
a>b

E dqab
x,ydq̂ab

x,y

2ip/N )
a,b

E dRab
x dRab

y

2ip/~kN!)a

3E dpa
x,ydp̂a

x,y

2ip/N
d~pa

x2pa
y!)

a
E dEa

x,y

2ip/N

3expH 2N(
a>b

qab
x,yq̂ab

x,y2kN(
a,b

Rab
x Rab

y

1N(
a

pa
x,yp̂a

x,y1N(
a

Ea
x,yJ

3exp$N@Gx1Gy#%^^uudet~D !uun&&, ~14!

where

Gx5 ln )
a
E dx̃adx̂a

2p
exp̂ L x~$x̃a,x̂a%!‰

ª ln )
a
E dx̃adx̂a

2p
expH (

a>b
q̂ab

x x̃aQ~ x̃a!x̃bQ~ x̃b!

1k(
a,b

Rab
y ix̂ax̃bQ~ x̃b!2

1

2 (
a,b

qab
y x̂ax̂b

2 i(
a

x̃aQ~2 x̃a!x̂a2 inx(
a

x̂a2(
a

Ea
xx̃aQ~ x̃a!

2(
a

p̂a
xQ~ x̃a!J , ~15!

Gy5 ln )
a
E dỹadŷa

2p
exp̂ L y~$ ỹa,ŷa%!‰

ª ln )
a
E dỹadŷa

2p
expH (

a>b
q̂ab

y ỹaQ~ ỹa!ỹbQ~ ỹb!

1k(
a,b

Rab
x ỹaQ~ ỹa!i ŷ b2

1

2 (
a,b

qab
x ŷaŷb

2 i(
a

ỹaQ~2 ỹa!ŷa2 iny(
a

ŷa2(
a

Ea
yỹaQ~ ỹa!

2(
a

p̂a
yQ~ ỹa!J .

In the thermodynamic limitN→` the integrals over orde
parameters in Eq.~14! may be performed by saddle poin
integration. In order to be able to analytically continue t
saddle point ton→0 we choose the replica-symmetric~RS!
ansatz for the order parameters

qaa
x,y5q1

x,y , q̂aa
x,y52

1

2
q̂1

x,y ; a,

qab
x,y5q0

x,y , q̂ab
x,y5q̂0

x,y ; a.b,

Raa
x 5R1

x , Raa
y 5R1

y ; a,
~16!

Rab
x 5R0

x , Rab
y 5R0

y ; aÞb,
pa
x,y5px,y, p̂a

x,y5 p̂x,y ; a,

Ea
x,y5Ex,y, ; a.

q1
x5(1/N)( ixixi denotes the self-overlap of the mixed stra

egies of playerX, whereasq0
x5(1/N)( ixi

1xi
2 characterizes

the overlap between the mixed strategies correspondin
two distinct NE, and analogously for playerY.

The integrals overx̃a, x̂a, ỹa, and ŷa may be evaluated
and the limitn→0 may be taken as outlined in Append
A 1. Gx and Gy evaluated at the RS saddle point are sy
metric with respect to an interchange of the playersX andY.
Thus the maximum ofS(nx,ny) occurs at equal payoffs an
in the thermodynamic limit NE with any other combinatio
of payoffs will be exponentially rare by comparison. Hen
we may restrict our discussion to the casenx5ny5n, where
all order parameters are symmetric under interchange of
players.

We thus obtain the average entropy of the number of
within the RS ansatz,

Sk~n!5
1

N
^^ln N~n,n!&&

52 extrq1 ,q̂1 ,q0 ,q̂0 ,R1 ,R0 ,E,pFq1q̂1

2
1

q0q̂0

2
2

kR1
2

2

1
kR0

2

2
1E2

p

2
1E da db pk̃~a,b!ln L~a,b!G ,

~17!

wherepk̃(a,b) with k̃5kR0 /Aq0q̂0 denotes

pk̃~a,b!5
1

2pA12k̃2
expS 2

a222k̃ab1b2

2~12k̃2!
D , ~18!

and thus echoes the original distribution of the payoffs, a

L~a,b!5HS 2
n2Aq0b

Aq12q0
D

1A p

~q12q0!~ q̂11q̂0!1k2~R12R0!2

3GS 2
n2Aq0b

Aq12q0
D

3KS k~R12R0!~Aq0b2n!

q12q0
2Aq0a1E

Aq̂11q̂01
k2~R12R0!2

q12q0

D ,

~19!

where K(x) is a shorthand forH(x)/G(x) with G(x)
5(1/A2p)exp(2x2/2), and H(x)5*x

`dy G(y). The extre-
mum is to be taken over all order parameters, The sad
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point equations corresponding to Eq.~17! may be solved
numerically, their solutions will be discussed in detail
Sec. IV.

A. Distribution of the strategy strengths and
the potential payoffs

In this section we calculate the distribution of strate
strengthsrx(x)5Š^(1/N)( id(xi2x)&‹ and the potential pay
offs rlx

(l)5Š^(1/N)( id(( jai j y j2l)&‹ at NE. Due to the
symmetry of Eq.~14! under an interchange of players fo
nx5ny it is sufficient to calculate these distributions for

single player only. We make use of the set of variablesx̃i

introduced in Sec. II, since the distributionr x̃( x̃) is equal to

rx(x) for x̃.0 and equal torlx
(l2nx) for x̃,0. By the

same token, the fraction of strategies withxi50 is equal to

*2`
0 dx̃ r x̃( x̃)512p and the fraction of potential payoff

with l i
x5nx is *0

`dx̃ r x̃( x̃)5p.
Since all pure strategies are equivalent after averag

over the payoffs~translation invariance!, we calculate
e have
g the

the

ed the
ec. IV C.

e
ed
Eqs.
r x̃~ x̃!5KKE dm~ x̃!dm~ ỹ!d~ x̃12 x̃!)
i

d~ I i
x!)

j
d~ I j

y!UU]~ I x,I y!

]~ x̃,ỹ!
UU

E dm~ x̃,ỹ!)
i

d~ I i
x!)

j
d~ I j

y!UU]~ I x,I y!

]~ x̃,ỹ!
UU LL

5 lim
n→0

KK)
a51

n E dm~ x̃,ỹ!d~ x̃1
12 x̃!)

i ,a
d~ I i

xa!)
j ,a

d~ I j
ya!)

a
UU]~ I xa,I ya!

]~ x̃a,ỹa!
UULL . ~20!

In order to be able to perform the average over payoffs occurring in both the numerator and the denominator, w
represented the denominator byn21 replicas. The average over payoffs now proceeds exactly as in Sec. II. Introducin
matrices of order parametersqab again, thei 51 term may be split off from the saddle point integral without distorting
saddle point in the thermodynamic limit. Taking the replica symmetric ansatz, one obtains

r x̃~ x̃!5 lim
n→0

)
a
E dx̃adx̂a

2p
exp̂ L x~$x̃a,x̂a%!‰d~ x̃12 x̃!

55
E da db pk̃~a,b!

1

A2p~q12q0!L~a,b!
expH 2

~ x̃1n2Aq0b!2

2~q12q0!
J , x̃,0

E da db pk̃~a,b!
Ap

A2p~q12q0!L~a,b!

3expH 2
„2k~R12R0!x̃1n2Aq0b…2

2~q12q0!
2

1

2
~ q̂11q̂0!x̃21aAq̂0x̃2Ex̃J , x̃.0,

~21!

whereL x($x̃a,x̂a%) was defined in Eq.~15!, the order parameters take on their saddle-point values, and we have dropp
player indices of the order parameters. These functions have to be evaluated numerically, and will be discussed in S

The same procedure may be used to calculate another quantity of interest, namely, the fractionw of pure strategies which
areboth played with nonzero probability in two randomly chosen Nash equilibria. Likeq0, this quantity is a measure of th
degree of similarity of two randomly chosen NE. However,w does not directly depend on the self-overlap of the mix
strategies, and may serve to test if there are strategies which are more likely to be played at a NE than others. From~14!
and ~16! one obtains

w5 lim
n→0

)
a
E dx̃adx̂a

2p
exp̂ L x~$x̃a,x̂a%!‰Q~ x̃1!Q~ x̃2!

5E da db pk̃~a,b!
p

@~q12q0!~ q̂11q̂0!1k2~R12R0!2#L2~a,b!
G2S 2

n2Aq0b

Aq12q0
D

3K2S k~R12R0!~Aq0b2n!

q12q0
2Aq0a1E

Aq̂11q̂01
k2~R12R0!2

q12q0

D . ~22!



t

t t

th
ed

dd
-

ff-

e
ia
R

or

f

or

e

l
th
y

e

the

ber
r,
ed.

the
-

n
ay,

to
e

-

lly
s

per
e

-
t
ce-
stri-

2332 PRE 61J. BERG
B. Stability of the replica-symmetric saddle point

The results for the quenched average were derived on
basis of the replica-symmetric ansatz@Eq. ~16!#. In this sec-
tion we investigate the stability of this ansatz with respec
small fluctuations around Eq.~16! in order to check if this
ansatz is at least locally stable. We restrict ourselves to
special casek50, where the payoff matrices are uncorrelat
and the order parametersRab

x andRab
y do not arise@15#. We

consider small transversal fluctuations around the RS sa
point, and expand Eq.~14! to second order in these fluctua
tions to obtain

S5SRS1
1

2
DTMD1O~D3!, ~23!

where D denotes a vector of small fluctuations in the o
diagonal elements of the order parametersqab

x , q̂ab
x , qab

y ,

and q̂ab
y , andM is given by

M51
]2Gy

]qab
x ]qcd

x
2I 0

]2Gy

]qab
x ]q̂cd

y

2I
]2Gx

]q̂ab
x ]q̂cd

x

]2Gx

]q̂ab
x ]qcd

y
0

0
]2Gx

]qab
y ]q̂cd

x

]2Gx

]qab
y ]qcd

y
2I

]2Gy

]q̂ab
y ]qcd

x
0 2I

]2Gy

]q̂ab
y ]q̂cd

y

2 .

~24!

Due to the symmetry of Eq.~14! under an interchange of th
players at the RS saddle point, only three different nontriv
submatrices need to be evaluated. The criterion for the
ansatz to be locally stable needs to be determined by w
ing out the paths of integration in the complex plane ofq̂x

and q̂y . Denoting the replicon eigenvalues o
]2Gx/]q̂ab

x ]q̂cd
x , ]2Gy/]qab

x ]qcd
x , and ]2Gy/]qab

x ]q̂cd
y by

l1 , l2, and l3, respectively, one obtains the criterion f
the local stability of the RS ansatz;

1

l2
@l1l22~l321!2#,0,

~25!
1

l2
@l1l22~l311!2#,0.

For details of the calculation, see Appendix B.

IV. DISCUSSION OF THE RESULTS

The quantitySk(n) contains a wealth of information. W
begin by discussing the general shape ofSk(n) and the num-
ber of NE as a function ofk, then turn to the statistica
properties of NE and give a geometric interpretation of
results, and finally discuss the distribution of potential pa
offs and the strategy strengths.
he

o

e

le

l
S
k-

e
-

A. Sk„n… and the number of NE

Expression~17! for Sk
RS(n) defines a family of curves

with a pronounced maximum shown exemplarily fork50 in
Fig. 1. As argued in Sec. II in the thermodynamic limit th
maximum ofSk(n) dominates the spectrum of NE.

Another point of interest is the value ofn whereSk(n)
crosses theS50 axis. Due to the symmetry ofS(nx,ny)
under an interchange of the players this point indicates
NE with the maximum sum of the payoffs. Fork521 it
takes on the value 0 and increases monotonously withk. At
k5kc it diverges to infinity;Sk(n) no longer crosses theS
50 axis. In this case there is an exponentially large num
of NE offering an arbitrarily large payoff to either playe
where an arbitrarily small fraction of strategies are play
From the annealed approximation one obtainskc'20.59,
the corresponding result from the RS expression for
quenched average iskc'20.58. This effect may be ex
plained as follows: At large values ofk players may pick a
few of the pairs of strategies (i , j ), which offer a large payoff
to both of them and play them with a large probability. A
exponential number of NE may be constructed in this w
even though their number is exponentially small compared
the total number of NE. The entropy of NE given by th
maximumSk of Sk(n) is shown in Fig. 2.

We find Sk52150, since there is only a single equilib
rium point for zero-sum games.Sk increases withk, so for
all k.21 the typical number of NE scales exponentia
with N. The maximum of the typical number of NE i
reached for the case of symmetric games, whereSk51
;0.358. This result may be compared with a rigorous up
bound for the maximal number of NE in a bimatrix gam
derived using geometric methods@3,4#: For any nondegener
ate N3N bimatrix game with largeN there are at mos
e0.955N equilibrium points. As expected, the typical-case s
nario does not saturate this bound, at least not for the di
bution of payoffs considered here. Nevertheless fork.21

FIG. 1. The results of the quenched averages ofSk(n) for
k520.8 and 0, respectively~bottom and top, respectively!. For
k50 replica symmetry is locally stable forn.0.67 as indicated by
the black dot.
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the typical number of NE investigated here and the maxim
number of NE both scale exponentially withN.

The increase of the number of NE with the correlati
between the payoff matrices may be explained as follows:
will be discussed in Sec. IV B, the payoffn to both players
increases withk. For increasing values ofn5nx5ny the
necessary~but not sufficient! conditions for a NE,

(
j

ai j y j<nx xi>0 ; i ,

~26!

(
i

xibi j <ny yj>0 ; j

become increasingly easy to fulfill. In fact forn50 only a
single point on the simplexes of the two players fulfills E
~26!, whereas for largen a correspondingly large section o
the simplexes qualify as a candidate for equilibrium poi
@12#. As a result the number of points which apart from E
~26! obey (( jai j y j2nx)xi50 and (( ixibi j 2ny)yj50, and
thus constitute NE increases withk.

B. Statistical properties of Nash equilibria

In the thermodynamic limit not only the number of N
will be dominated by the maximum ofSk(n), but a randomly
chosen NE will also give the payoffn5nx5ny

5argmaxSk(n) with probability 1, because the number
NE with this payoff is exponentially larger than the numb
of all other NE. Similarly, the self-overlap, the mutual ove
lap, and the fraction of strategies played with nonzero pr
ability will take on their saddle-point values evaluated at
maximum ofSk(n) with probability 1. Figure 3 shows the
payoff dominating the spectrum of NE and the correspo
ing fractionp of strategies played with nonzero probabilit

FIG. 2. The RS entropy of NESk as a function ofk ~solid line!.
The numerical results stem from enumerations with system sizN
518 averaged over 100 samples, and the error bars denote
statistical error. The inset shows the finite-size effects for the c
k50. S0 is plotted against 1/N, and the analytic result forN→` is
indicated by the filled diamond.
l

s

.

s
.

r
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e
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whereas the self-overlap of mixed strategiesq1 and the over-
lap q0 between the mixed strategies of different NE a
shown in Fig. 4.

At k521 we recover the results for zero-sum games w
q15q05p, n50, and p51/2 @12#. As k rises, the payoff
increases. This effect may be understood as follows: At
creasingk the outcome of a pair of strategies (i , j ) which is
beneficial to playerX say, tends to become more beneficial
playerY. As a result players focus on these strategies and
payoff at a NE to both players rises. By the same token,
fraction p of strategies which are played with nonzero pro
ability at a NE decreases withk and the self-overlapq1 of
the mixed strategies increases.

the
se

FIG. 3. The payoffn ~solid line! and the fractionp ~dashed line!
of strategies played with nonzero probability of the typical NE. T
analytic results are compared with numerical simulations forN
550 averaged over 200 samples.

FIG. 4. The self-overlap of mixed strategiesq1 ~solid line!, the
overlap q0 between the mixed strategies of different NE~dashed
line!, and the ratioq0 /q1 ~long-dashed line!. The analytic results
are compared with numerical simulations forN550 averaged over
200 samples forq1 andN518 averaged over 100 samples forq0 .
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The geometric structure of the set of NE may be elu
dated by considering the mutual overlapq05(1/N)( ixi

1xi
2

between mixed strategies of different NE. Atk521, where
there is only a single NE,q0 equals the self-overlapq1 .
After an initial increaseq0 decreases with increasingk. The
initial increase ofq0 is due to the rapid increase of th
lengths of the mixed strategy vectors, and is thus not see
the ratio between the overlaps. This result may be interpre
geometrically in that the NE become more and more se
rated with increasingk, and fork→11 they end up in nearly
uncorrelated positions,^x1x2&2^x1&^x2&50.21. At the same
time an increasing fraction of components of the mixed st
egies havexi50, i.e., lie on an edge of the simplex.

Even though the NE spread over the simplex with incre
ing k, players still tend to focus on specific strategies. T
may be seen by comparing the fraction of strategiesw played
in both mixed strategies of two randomly chosen NE w
the corresponding resultp2, which would result if players
chosep strategies to be played with nonzero probabilities
random. From Fig. 5 one finds that althoughw decreases
with k consistent with the spread of NE over the simplex
always remains abovep2 . This behavior is consistent with
the idea that with increasingk players focus on pairs o
strategies which are beneficial to both, of which there i
large number for large values ofk.

Since NE are isolated points, replica symmetry descri
a set of equilibrium points which are distributed uniform
over a part of the simplex with opening angle arccos(q0 /q1).
A replica-symmetry-breaking scenario would involve clu
ters of NE, and maybe even clusters of clusters, so an an
explicitly including more than two overlap scales wou
have to be employed along the lines of the Parisi scheme@5#.
However, at least fork50, we found that replica symmetr
is locally stable forn.0.67 and most importantly at th
maximum of the curve. Replica symmetry remained loca
stable across the range ofn investigated; nevertheless it ma
become locally unstable again at sufficiently large values

FIG. 5. The fraction of strategiesw ~top! played in both mixed
strategies of two randomly chosen NE and the squarep2 of the
fraction of strategies played at a single NE~bottom! againstk. The
analytic results are compared with numerical simulations forN
550 averaged over 200 samples forp2, andN518 averaged over
100 samples forw.
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n. Thus we may conclude that for a typical NE atk50 the
replica-symmetric ansatz is self-consistent. Since we kn
from the results of Ref.@12# that replica symmetry is mar
ginally stable atk521, one may in fact speculate that fo
the typical NE the RS scenario holds across the entire ra
of k. Nevertheless there may well be distributions of t
payoffs which lead to nonuniform distributions of NE and
replica-symmetry breaking, presumably distributions w
large values ofk, or with correlations between the entries
the payoff matrices at different sites.

C. Distribution of potential payoffs and the strategy strengths

Figure 6 shows the distribution of strategy streng
rx(x)5^^(1/N)( id(xi2x)&& ( x̃.0) and the potential pay
offs rlx

(l)5^^(1/N)( id(( jai j y j2l)&& ( x̃,0) calculated
in Sec. III A. The decrease of the fraction of strateg
played with nonzero probability,*0

`dx̃ r x̃( x̃)5p with k is
clearly visible. One also finds a marked tendency for b

FIG. 6. The distribution of the potential payoffs (x̃,0) and the

strategy strengths (x̃.0) for k521, 0, and 1 from top to bottom.
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players to use large values ofxi andyj for decreasing values
of p, as is demanded by the normalization condition.

One also observes the formation of a ‘‘shoulder’’ in t

distribution ofr x̃( x̃)5rlx
(l2nx) ( x̃,0) centered at2n. It

shows that the distribution of( jai j y j remains peaked at zer

leading to the formation of the shoulder atx̃52n as n in-
creases.

D. Comparison with numerical results

The numerical results for Figs. 2 and 6,q0 in Fig. 4, and
w in Fig. 5 were obtained by using so-called vertex enume
tion to enumerate all NE. Since the computational effort
vertex enumeration scales with;2.598N, the system size had
to be restricted toN518 and averages were taken over 1
samples, resulting in pronounced finite-size effects. Nev
theless the increase of the number of NE withk is clearly
confirmed by the simulations.

The numerical results for Fig. 3,q1 in Fig. 4, p in Fig. 5,
and Fig. 6 were obtained by using an iterated variant of
Lemke-Howson algorithm@16,4# to locatea singleNE and
by averaging the results forN550 over 200 different real-
izations of the payoffs. Although some finite-size effects
main, there is good agreement between the analytical and
numerical results.

V. SUMMARY AND OUTLOOK

We analyzed the properties of Nash equilibria in lar
random bimatrix games. To this end we constructed an in
cator function which was used to count the number of
with given payoffs to both players. We found that the nu
ber of NE is exponentially dominated by NE with a certa
payoff to both players, and a certain set of order parame
This implies that for a randomly chosen Nash equilibriu
quantities such as the fraction of strategies played wit
given probability, the self-overlap, and most importantly t
payoff to either player take on a specific value with probab
ity 1.

We considered square payoff matrices and argued tha
large games and identically and independently distribu
elements of the payoff matrices at different sites (i , j ), the
only relevant parameter of the probability ensemble is
correlation between elements of the same site of the pa
matricesa andb. We then calculated the quenched avera
of the number of Nash equilibria, from which one may al
deduce quantities such as the payoff, the self-overlap,
the mutual overlap of mixed strategies at NE, and the dis
bution of the strategy strengths and the potential payoffs

We found that both the number of equilibrium points a
the payoff to both players increase with the correlation
tween the payoff matrices: With increasing correlation
number of pairs of strategies which are beneficial to b
players grows. Players may focus on these pairs and ach
a larger payoff; the fraction of strategies played with nonz
probability decreases accordingly. From the values of
saddle-point parameters one may also deduce informatio
the geometric properties of NE: With increasing correlat
between the payoff matrices the NE spread out over w
regions of the simplex. These analytic results were quan
-
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tively compared with extensive numerical simulations, a
good agreement was found.

Another point of relevance is that for a sufficiently larg
correlation between the payoff matrices, an exponentia
large number of NE appears which offer arbitrarily lar
payoffs ~on the statistical mechanics scale! to both players.
The number of such NE is of course exponentially sm
compared to the total number of NE; nevertheless these e
librium points may be relevant if players are free to choo
equilibrium points.

A number of generalizations and extensions of these s
narios may be envisaged at this stage, including the inve
gation of bimatrix games with rectangular payoff matrices
payoff matrices with correlations between the elements
different sites. Furthermore, a scenario of games of sev
players might be extended to describe cooperative gam
where coalitions of players pool their payoffs and seek
maximize the gain of their respective coalition. In this co
text it may also be interesting to consider the case ofO(N)
players choosing betweenO(1) strategies.
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APPENDIX A: QUENCHED AVERAGE

In the following we give a derivation of the quenche
average of the entropy of NE. In order to represent the lo
rithm of N we replicaten times the expression for the num
ber of NEN @Eq. ~7!# to obtain Eq.~9!.

Treating the normalizing determinant as a self-averag
quantity, we may split off lnuudet(D)uu with

D5S d i i 8Q~2 x̃i ! 2ai j Q~ ỹ j !

2bi j Q~ x̃i ! d j j 8Q~2 ỹ j !
D ~A1!

from Eq. ~9!, andseparatelyaverage the normalizing dete
minant over the disorder. Leaving out all the rows and c
umns which have only the entry 1 along the diagonal and
not contribute to the determinant, we are left with the det
minant of a matrix

D85S 0 2a8

2b8 0 D , ~A2!

where the matricesa8 andb8 are thepN by pN submatrices
of the payoff matrices containing the elements withx̃i.0
andỹ j.0. We thus calculatê̂ uuln det(D)uu&& as a function of
px5py exploiting the block-structure of the matrixD and
using results from the theory of random matrices@17#. Since
we have lnuudet(D)uu5 lnuudet(a8)uu1 lnuudet(b8)uu, the correla-
tion between the elements of these matrices has no ef
We may thus use the circular theorem@18#, which gives the
average densityr~v! of eigenvaluesv of a pN by pN matrix
with identically and independently Gaussian distributed
tries with zero mean and varianceN21
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r~v!5H ~pp!21 uuvuu,Ap

0 otherwise,
~A3!

giving

^^lnuudet~D !uu&&52NpE
S
dvr~v!uuvuu5Np~ ln p21!,

~A4!

where the integral is over the region in the complex pla
with uuvuu,Ap. After this step, the only terms in Eq.~9!
where the disorder is present are

KK)
i , j

expH i(
a

x̂i
aai j ỹ j

aQ~ ỹ j
a!1 i(

a
x̃i

aQ~ x̃i
a!bi j ŷ j

aJ LL
5expH 21/~2N!(

a,b
S (

i
x̂i

ax̂i
b(

j
ỹ j

aQ~ ỹ j
a!ỹ j

bQ~ ỹ j
b!

22k(
i

i x̂ i
ax̃i

bQ~ x̃i
b!(

j
i ŷ j

bỹ j
aQ~ ỹ j

a!

1(
i

x̃i
aQ~ x̃i

a!x̃i
bQ~ x̃i

b!(
j

ŷ j
aŷ j

bD J , ~A5!
a
h
s
n

o

-

th
e

where the indicesa and b denote the replicas,a,b
51, . . . ,n, and the average has been taken over the dis
bution of payoffs@Eq. ~3!#. In order to obtain expression
which factorize ini andj, we introduce the matrices of orde
parameters

qab
x 5

1

N (
i

x̃i
aQ~ x̃i

a!x̃i
bQ~ x̃i

b!,

qab
y 5

1

N (
j

ỹ j
aQ~ ỹ j

a!ỹ j
bQ~ ỹ j

b!, ~A6!

Rab
x 5

1

N (
i

i x̂ i
ax̃i

bQ~ x̃i
b!, Rab

y 5
1

N (
j

i ŷ j
bỹ j

aQ~ ỹ j
a!,

pa
x5

1

N (
i

Q~ x̃i
a!, pa

y5
1

N (
j

Q~ ỹ j
a!

using integrals overd functions. The last pair of order pa
rameters is introduced so the normalizing determinant m
be included as a function ofpa

x andpa
y . This procedure turns

Eq. ~A5! into
)
a>b

E dqab
x,ydq̂ab

x,y

2p/N )
a,b

E dRab
x dRab

y

2p/~kN! )a
E dpa

x,ydp̂a
x,y

2p/N
d~pa

x2pa
y!expH 2 iN (

a>b
qab

x,yq̂ab
x,y2 ikN(

a,b
Rab

x Rab
y

1 iN(
a

pa
x,yp̂a

x,yJ expH (
a>b

q̂ab
x x̃aQ~ x̃a!x̃bQ~ x̃b!1 ik(

a,b
Rab

y ix̂ax̃bQ~ x̃b!2
1

2 (
a,b

qab
y x̂ax̂b2 i(

a,i
x̃i

aQ~2 x̃i
a!x̂i

a

2 inx(
a,i

x̂i
a2 i(

a
p̂a

xQ~ x̃a!J expH (
a>b

q̂ab
y ỹaQ~ ỹa!ỹbQ~ ỹb!1k(

a,b
Rab

x ỹaQ~ ỹa!i ŷ b2
1

2 (
a,b

qab
x ŷaŷb

2 i(
a,i

ỹi
aQ~2 ỹi

a!ŷi
a2 iny(

a,i
ŷi

a2 i(
a

p̂a
yQ~ ỹa!J . ~A7!
agi-

r
der

The
Eq.
of
All order parameters have been introduced via conjug
variables, exceptRab

x andRab
y , which are conjugate to eac

other. Care must be taken to scale all order parameter
they are ofO(1) in the thermodynamic limit. Expressio
~A7! may now be substituted back into Eq.~9!. The simplex
constraint is incorporated by including yet another set
integrals

)
a
E dEa

x,y

2p/N
expH iN(

a
Ea

x,y2 i(
a

Ea
x(

i
x̃i

aQ~ x̃i
a!

2 i(
a

Ea
y(

i
ỹi

aQ~ ỹi
a!J . ~A8!

The integrals overx̃i
a andx̂i

a now factorize and form a prod
uct of N identical terms and may thus be written as theNth
power of a single such term. The same point applies to
te

so

f

e

integrals overỹ j
a and ŷ j

a . Anticipating saddle points of the
integrals over conjugate order parameters along the im

nary axis, we also perform a change of variablesi q̂ab
x,y

→q̂ab
x,y , and analogously forRab

y , Ea
x,y , andp̂a

x,y . Including
the normalizing determinant~A4!, we finally obtain Eqs.
~14! and ~15!.

Replica-symmetric ansatz

In the thermodynamic limitN→` the integrals over orde
parameters are dominated by their saddle point. Yet in or
to carry out the replica limesn→0 we have to make an
ansatz for the values of the order parameter matrices.
simplest ansatz is the replica-symmetric one given by
~16!. SinceGx andGy are symmetric under an interchange
the players we may drop the superscriptsx andy. We obtain
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G5 ln )
a
E dx̃adx̂a

2p
expH 2

1

2 (
a

~ q̂11q̂0!x̃ax̃aQ~ x̃a!

1
1

2 (
a,b

q̂0x̃aQ~ x̃a!x̃bQ~ x̃b!

1k~R12R0!(
a

ix̂ax̃aQ~ x̃a!1kR0(
a,b

ix̂ax̃bQ~ x̃b!

2
1

2
~q12q0!(

a
x̂ax̂a2

1

2
q0(

a,b
x̂ax̂b

2 i(
a

x̃aQ~2 x̃a!x̂a2 in(
a

x̂a

2E(
a

x̃aQ~ x̃a!2 p̂(
a

Q~ x̃a!J . ~A9!

A particularly efficient way to disentangle the three su
over the replica-replica couplings is to use two coup
Gaussian integrals over variables termeda andb echoing the
original average over the payoff matrices, which yield

G5 lnE da db pk̃~a,b!)
a
E dx̃adx̂a

2p

3expH 2
1

2 (
a

~ q̂11q̂0!x̃ax̃aQ~ x̃a!

1k~R12R0!(
a

ix̂ax̃aQ~ x̃a!

2
1

2
~q12q0!(

a
x̂ax̂a1aAq̂0(

a
x̃aQ~ x̃a!

1 ibAq0(
a

x̂a2 i(
a

x̃aQ~2 x̃a!x̂a2 inx(
a

x̂a

2E(
a

x̃aQ~ x̃a!2 p̂(
a

Q~ x̃a!J
ª lnE da db pk̃~a,b!)

a
E D~ x̃a,x̂a!, ~A10!

wherepk̃(a,b) with k̃5kR0 /Aq0q̂0 is defined by Eq.~18!.
The resulting expression factorizes, givingn identical inte-
grals overx̃ and x̂, which may be easily performed by con
sidering the casesx̃,0 and x̃.0 separately. The limitn
→0 of Eq. ~14! may now be taken, yielding Eqs.~17!–~19!.

APPENDIX B: STABILITY OF THE REPLICA-
SYMMETRIC SADDLE POINT

In this section we outline the calculation of the eigenv
ues of the Hessian matrix of Eq.~14! in order to check if
ansatz~14! is locally stable against small fluctuations of th
order parameters. We focus on the so-called replicon mo
@19#, and restrict ourselves to the casek50. In this case the
Hessian matrix of fluctuations of Eq.~14! around Eq.~16! is
given by Eq.~24!.
s
d

-

es

The derivatives ofGx and Gy are evaluated at the RS
saddle point. Due to the symmetry ofGx and Gy under an
interchange of the players we have to find the replicon
genvalues of three different submatrices ofM, beginning
with ]2G/]q̂ab]q̂cd : At the replica-symmetric saddle poin
there are three different entries in then(n21)/23n(n
21)/2 matrix of derivatives with respect to the off-diagon
elements ofq̂ab with a.b. These are

]2G

]q̂ab]q̂cd

5H P1 for a5c,b5d

Q1 for exactly one pair of indices equal

R1 for aÞc,bÞd,
~B1!

where

P15^xa
2xb

2&2^xaxb&^xaxb&,

Q15^xa
2xbxc&2^xaxb&^xaxc&, ~B2!

R15^xaxbxcxd&2^xaxb&^xcxd&,

the angular brackets denote the normalized averages ov

^~••• !&5

)
a
E dx̃adx̂a

2p
exp̂ L x~$x̃a,x̂a%!‰~••• !

)
a
E dx̃adx̂a

2p
exp̂ L x~$x̃a,x̂a%!‰

,

~B3!

andL x is defined in Eq.~15! and the order parameters tak
on their saddle-point values. In the limitn→0 the replicon
eigenvalue of this matrix equals

l15P122Q11R1

5E da db pk̃~a,b!F E D~ x̃,x̂!x̃2Q~ x̃!

E D~ x̃,x̂!

2S E D~ x̃,x̂!x̃Q~ x̃!

E D~ x̃,x̂!
D 2G 2

5E da db pk̃~a,b!F ]2

]E2
ln L~a,b!G 2

, ~B4!

whereD( x̃,x̂) is defined in Eq.~A10! andL(a,b) is defined
in Eq. ~15!.

The replicon eigenvalue of]2G/]qab]qcd is evaluated in
the same fashion. We obtain

]2G

]qab]qcd
5H P2 for a5c,b5d

Q2 for exactly one pair of indices equal

R2 for aÞc,bÞd,
~B5!
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where

P25^x̂a
2x̂b

2&2^x̂ax̂b&^x̂ax̂b&,

Q25^ x̂a
2x̂bx̂c&2^x̂ax̂b&^x̂ax̂c&, ~B6!

R25^ x̂ax̂bx̂cx̂d&2^x̂ax̂b&^x̂cx̂d&.

In the limit n→0 the replicon eigenvalue of this matri
equals

l25P222Q21R2

5E da db pk̃~a,b!F E D~ x̃,x̂!x̂2

E D~ x̃,x̂!

2S E D~ x̃,x̂!x̂

E D~ x̃,x̂!
D 2G 2

5E da db pk̃~a,b!F ]2

]n2
ln L~a,b!G 2

. ~B7!

The matrix]2G/]qab]q̂cd also consists of three differen
entries. These are

]2G

]q̂ab]qcd

5H P3 for a5c,b5d

Q3 for exactly one pair of indices equal

R3 for aÞc,bÞd,
~B8!

where

P352^xaxbx̂ax̂b&1^xaxb&^x̂ax̂b&,

Q352^xaxbx̂ax̂c&1^xaxb&^x̂ax̂c&, ~B9!

R352^xaxbx̂cx̂d&1^xaxb&^x̂cx̂d&.

In the limit n→0 the replicon eigenvalue of this matri
equals
l35P322Q31R3

52E da db pk̃~a,b!F E D~ x̃,x̂!x̃x̂Q~ x̃!

E D~ x̃,x̂!

2

E D~ x̃,x̂!x̃Q~ x̃!

E D~ x̃,x̂!

E D~ x̃,x̂!x̂

E D~ x̃,x̂!
G 2

5E da db pk̃~a,b!F ]2

]n]E
ln L~a,b!G2

. ~B10!

Since the replicon eigenvectors of these three matrices
parallel, the eigenvalues of Eq.~24! are those of the matrix

S l2 21 0 l3

21 l1 l3 0

0 l3 l2 21

l3 0 21 l1

D , ~B11!

and we denote the coefficients of replicon-fluctuations
dqx, dq̂x, dqy, anddq̂y . In order to determine the criterion
for local stability of the RS saddle point, we first elimina
the fluctuations in the conjugate order parametersdq̂x and
dq̂y near the saddle point. From]S/]dq̂y50 and]S/]dq̂y

50 one obtains dq̂x5(1/l2)(dqx2l3dqy) and dq̂y

5(1/l2)(dqy2l3dqx), respectively.
This allows us to write the matrix of replicon fluctuation

in terms ofdqx anddqy only yielding after some algebra

S5SRS1
1

2
~dqxdqy!M 8S dqx

dqyD 1O~d3!, ~B12!

with

M 85
1

l2
S l1l22l3

221 2l3

2l3 l1l22l3
221

D . ~B13!

Since the integrals over the variablesqx andqy are now over
a real function, the criterion that the RS ansatz~14! is locally
stable is that both eigenvalues ofM 8 are negative, giving

1

l2
@l1l22~l321!2#,0,

~B14!
1

l2
@l1l22~l311!2#,0.
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